Chia En Chang (張嘉恩)

I am an

Specializing in Large Language Models (LLMs), Computer Vision, and Full-Stack Solutions

About Me

As a Computer Science graduate from the University of Arizona, I am an AI Engineer with a strong passion for software development and machine learning. I have hands-on experience in Large Language Model (LLM) development, AI system integration, and advanced image analysis automation. I excel at transforming innovative ideas into effective, AI-driven solutions, from building intelligent systems that integrate language models and computer vision to developing full-stack interactive platforms for complex data analysis and reporting challenges.

Work Experience

Nov 2024 - Present

AI Research & Technology Engineer

Anivance AI

  • Built LLM applications with GPT-4o, Vertex AI, and Claude for medical image captioning, domain-specific Q&A, and automated report writing.
  • Enabled AI-driven automation of CellProfiler pipelines for batch cell image processing, labeling, and morphological feature extraction.
  • Developed a full-stack interactive platform with Flask and Gradio, simplifying the AI report generation process.
  • Implemented an MCP architecture for automatic registration and cross-calling among AI models, enhancing modularity and scalability.
  • Researching and developing a Multimodal Neural-Symbolic AI architecture integrating Logic Tensor Networks (LTN) with knowledge graphs, replacing traditional fine-tuning with axiom-driven learning to achieve explainable reasoning processes.
May 2024 - Oct 2024

WordPress Developer

Taiwan Residential and Commercial Real Estate

  • Developed and launched a comprehensive social platform for the real estate sector using WordPress.
  • Managed full-stack development, ensuring seamless front-end and back-end integration to enhance community engagement.
Aug 2023 - Feb 2024

Adversarial Machine Learning Research Assistant

University of Arizona Artificial Intelligence Laboratory

  • Conducted research on adversarial machine learning for cybersecurity applications, focusing on evading commercial malware detectors.
  • Explored Universal Adversarial Malware Perturbations (UAMP) to improve evasion rates for malware detection systems.
Aug 2020 - Dec 2024

Bachelor of Science in Computer Science

University of Arizona

  • Majored in Computer Science with a focus on algorithms, AI problem solving, machine learning, and natural language processing.

Technical Skills

AI/ML Frameworks & Tools

LLM (Claude, OpenAI API, Gemini), RAG, Multi-Agent Systems, Neural-Symbolic AI, LTN (Logic Tensor Networks), FastAPI, Flask

  • 大型語言模型 (LLM):OpenAI GPT-4/GPT-5, Anthropic Claude (Sonnet 4.5), Google Gemini, Vertex AI
  • 多模態AI:BLIP, LLaVA, ImageBind, BioCLIP, CLIP
  • 神經符號AI:Logic Tensor Networks (LTN), 神經符號混合架構
  • 嵌入模型:OpenAI Embeddings, Microsoft Embeddings, 自定義嵌入模型
  • NLP:spaCy, scispacy, transformers, DeBERTa
  • 框架:FastAPI, Flask, PyTorch

Computer Vision & Image Processing

CellPose, EasyOCR, Pillow, Scikit-Image, OpenCV, PyTorch

  • 圖像分析:OpenCV, scikit-image, PIL/Pillow
  • 細胞圖像分析:CellProfiler, Cellpose, 生物標記檢測
  • 圖像分割:語義分割、實例分割
  • OCR:EasyOCR, 文字識別與提取
  • 深度學習框架:PyTorch, TensorFlow

Programming Languages

Python (Proficient), Java, JavaScript, PHP, C/C++, SQL

  • Python:精通,用於 AI/ML 開發、數據處理、後端開發
  • Java:物件導向程式設計、企業級應用開發
  • JavaScript:前端開發、互動式網頁應用
  • PHP:後端網頁開發、WordPress 開發
  • C/C++:系統程式設計、效能優化
  • SQL:資料庫查詢與管理

Backend & Web Development

RESTful APIs, WebSocket, Uvicorn, Gradio, HTML, CSS, JavaScript

  • Web 框架:FastAPI, Flask
  • API 設計:RESTful API, WebSocket, Streaming Response
  • 異步處理:asyncio, 背景任務處理
  • 前端技術:HTML5, CSS3, JavaScript (Vanilla), Chart.js
  • 伺服器:Uvicorn, Gunicorn
  • UI 框架:Gradio, Streamlit

Cloud & DevOps

Google Cloud AI Platform (Vertex AI), API Authentication, Ngrok, Git, VS Code

  • Google Cloud Platform:Vertex AI, GCP 認證
  • 容器化:Docker, docker-compose
  • 部署:Uvicorn, ngrok
  • 版本控制:Git, GitHub, GitLab
  • 開發工具:VS Code, PyCharm
  • API 認證:OAuth, JWT, API Key 管理

Other Proficiencies

Neo4j (Knowledge Graph), NLP (NLTK), Prompt Engineering, Python-Docx, Asyncio, MCP Protocol

  • 圖資料庫:Neo4j
  • 向量資料庫:FAISS, Elasticsearch, MongoDB Atlas
  • 知識圖譜:Neo4j 知識圖譜構建與查詢
  • 文檔處理:python-docx, pdfplumber, 自動生成與格式化
  • 數據處理:pandas, numpy
  • 數據可視化:matplotlib, seaborn, Chart.js
  • Prompt Engineering:LLM 提示詞優化與設計
  • MCP Protocol:模型通訊協議

Key Projects

AnivanceVerse - 虛擬實驗室系統

即時 LLM 實驗員表現評估系統,類似 nof1.ai。各 LLM 扮演實驗員,依照 protocol 在虛擬實驗室進行實驗,實驗結果與真人數據比較,評估各 LLM 實驗員的準確性。

技術棧:HTML5, CSS3, JavaScript (Vanilla), Chart.js, Python Flask, OpenAI GPT-5, Vertex AI (Claude Sonnet 4.5, Gemini 2.5 Pro), python-docx
核心功能:並行比較多個 LLM 實驗員的表現、即時表現指標(準確度、執行時間、實驗結果)、動態排行榜自動根據表現排名、實驗員動作記錄與思考過程展示、自動實驗輪次排程(每30秒執行新實驗)、統計儀表板整體表現追蹤
FlaskChart.jsGPT-5ClaudeGeminiReal-time

WRG_API - AI驅動週報生成系統

由 AI 驅動的強大後端服務,自動化實驗數據分析與報告生成流程。能夠處理 Word 文件、實驗圖片(如細胞影像)以及數據表格(CSV/Excel),並根據使用者指令,智能地選用分析工具、執行運算,最終產出一份結構化的實驗報告。

技術棧:FastAPI, Anthropic Claude 3.5 Sonnet (via Vertex AI), OpenCV, scikit-image, Cellpose (GPU加速), pandas, numpy, python-docx
核心功能:智能分析引擎、多模態輸入處理、動態工具系統、圖像與數據分析、自動報告生成、即時進度更新、互動式 AI 助手、資料夾批次處理
FastAPIClaudeCellposeGPUMulti-modalStreaming

ClinicalPaperGenerator - 智能臨床論文生成工具

使用 AI 智能分析醫學文檔和圖片,自動生成高品質學術論文。

技術棧:Python, Vertex AI (Claude Sonnet 4.5), python-docx, Pillow, Google Cloud Platform
核心功能:AI 圖片分析、智能文檔分析、多語言支援、自動標題生成、Token 優化、圖片智能插入
Vertex AIClaudeMedical AIDocument Generation

Textara - 學術AI報告生成系統

基於多模型AI的智能學術報告生成系統,支援國科會計畫書、期刊論文、學位論文等多種學術文件格式。

技術棧:Claude Sonnet 4.5, GPT-5, Gemini 2.5 Flash, arXiv, Semantic Scholar, OpenAlex, PubMed, DeBERTa-v3-large NLI, Flask, pyngrok, python-docx, pdfplumber, Pillow, spaCy, transformers
核心功能:多模型協同生成、四大學術數據庫整合、自動引用管理(IEEE格式)、證據歸因引擎、專業文檔生成、多媒體支援
Multi-ModelRAGAcademicCitationDeBERTa

CellPainting - 細胞圖像分析系統

整合 CellProfiler 進行細胞圖像分析,包含自動化管線生成、特徵提取與數據分析。

技術棧:CellProfiler, Python, pandas, numpy, JSON 配置管理
核心功能:CellProfiler 管線自動生成、細胞特徵提取(面積、形狀、強度等)、RowName 定義與分類系統、實驗數據標準化處理、時間序列數據分析
CellProfilerImage AnalysisAutomationBioinformatics

NeuroSymbolicAI - 神經符號AI五層架構系統

實現可解釋、可成長的生物醫學 AI 系統,採用神經符號混合架構(NeSy + LTN),取代傳統 Fine-tuning 方法。

技術棧:Logic Tensor Networks (LTN), PyTorch, transformers, Neo4j 知識圖譜, scispacy (生物醫學 NER), CLIP 編碼器(General CLIP + BiomedCLIP), 多 LLM 支援(Llama-3, Claude, Gemini, GPT-4)
系統架構(五層):多模態感知層、知識整合層、符號推理層、持續學習層、神經生成層。核心創新:公理取代數據、可解釋推理、LLM 可替換、持續成長、多維度驗證
Neural-Symbolic AILTNNeo4jExplainable AIBiomedical

WeeklyReportGenerator - 週報生成器

自動化實驗週報生成系統,整合多種圖像分析工具,生成結構化的實驗報告。

技術棧:Python, FastAPI, OpenCV, EasyOCR, pandas, python-docx
核心工具:Scale Bar Reader、RGB Intensity Analyzer、Cell Positive Analyzer、Biomarker Area Analyzer、CSV/Excel Analyzer、Image Splitter、Scale Bar Adder
FastAPIImage ProcessingAutomationReport Generation

Contact

I am actively seeking full-time opportunities in software development. I look forward to contributing my skills to your team. Please feel free to get in touch!